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1. Addition Reactions of Alkenes
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1A. How To Understand Additions
to Alkenes

< This is an addition reaction: E-Nu
added across the double bond
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< Since p bonds are formed from the
overlapping of & orbitals, & electron
clouds are above and below the plane
of the double bond
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< Electrophilic
e electron seeking
e C=C and C=C & bonds are
particularly susceptible to
electrophilic reagents (electrophiles)

< Common electrophile
e H*, X* (X = Cl, Br, I), Hg?*, etc.

Ch.8-6




< In an electrophilic addition, the &
electrons seek an electrophile, breaking
the © bond, forming a ¢ bond and
leaving a positive charge on the vacant
© orbital on the adjacent carbon.
Addition of B™ to form a ¢ bond
provides an addition product
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2. Electrophilic Addition of
Hydrogen Halides to Alkenes:
Mechanism and Markovnikov’s
Rule

< Mechanism

/\6+ /\6_ &_\@ Nu E
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< Mechanism
e Sometimes do not go through a
“free carbocation”, may go via

Ch.8-10

< Markovnikov’s Rule
e For symmetrical substrates, no
problem for regiochemistry
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< Markovnikov’s Rule

e But for unsymmetrical substrates,
two regioisomers are possible

N E E
H3C\ ﬂi\E—Nu (I:

® ® |
L£=C T CHymC—C—H or  CHy—C—C—H
H H H H H H
o)
lNu lNue
||E '|\lu different '|\lu ||E
CHy—C—C—H from CH;—C—C—H
H H H
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< Markovnikov’s Rule

e In the electrophilic addition of an
unsymmetrical electrophile across a
double bond of an alkene, the more
highly substituted and more
stabilized carbocation is formed as
the intermediate in preference to
the less highly substituted and less
stable one

Ch.8-13

< Markovnikov’s Rule

e Thus
& & E Nu E

NOT \/IJ

Note: carbocation stability = 3° > 2° > 1°
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< Addition of Hydrogen Halides
e Addition of HCI, HBr and HI across
a C=C bond
e H" is the electrophile

Carbocation
Intermediate

Transition state 1 u
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2A. Theoretical Explanation of \T o B \T
- N '
Markovnikov’s Rule T \
(1° cation) fast Br
/\‘8+ /3', (minor)
H H
I | ® H—Br
S, CH3— c—c H or CH3—C—C—H \=
\ step 1 I [ slow
(slow H H H H d
r.d.s.) © carbocation 1° carbocation (rds.) H o H
(more stable) (more stable) - AC) | Br
< One way to state Markovnikov’s rule is to (2° cation) fast
say that in the addition of HX to an alkene, Br-
the hydrogen atom adds to the carbon atom o N (ijor)
of the double bond that already has the g R
greater number of hydrogen atoms Step 1 Step 2 s 18




< Examples

! p CI H

| This transition CHcé.H:CHz H_CI

state resambles o + (1) _— 7_\ +

a 1% carbocation. I;‘ I.‘ "\\E"EC:?PH%\J n

This transition _,-';;HGE‘H=3';H? e H c
; 7/ " f ch He tlg ~ % 95 : 5
g CH30H=CH2/_.~‘r(,/ — "\1\ \
" HBi J';:’j \ Y "a:

el e = Q"“a:"._ H—Br H Br
Ar(), A \‘ CHACH,CHLEr @) +
ng;ﬁ-Es}g' Br H
Reaction coordinate (98 : 2)
Ch.8-19 Ch.8-20
2B. Modern Statement of <+ Examples o
- S
Markovnikov’s Rule -~ [>®_\ ] oH, \/I_\
. . . Cl Cl
< In the ionic addition of an !
. 4+ o T j

unsymmetrical reagent to a double 8 3 moje s (majon)

bond, the positive portion of the added
reagent attaches itself to a carbon
atom of the double bond so as to yield
the more stable carbocation as an
intermediate

Ch.8-21

Cl—OH 30 cation
1) —_—

less stable (minor)

1° cation
Ch.8-22

< Examples

SV OV

Cl
5 5 more stable (major)

I—Cl 3° cation
(2) .
Py a®
o | T c

I I
less stable (minor)
0 s
1" cation Ch. 8- 23

2C. Regioselective Reactions

< When a reaction that can potentially yield
two or more constitutional isomers actually
produces only one (or a predominance of
one), the reaction is said to be

regioselective
Cl H
\ H—Cl
/ > 7—\ + j—\
(major)|_| (minor)CI
|
regioisomers
Regioselectivity: 95 : 5 Ch.8- 24




2D. An Exception to Markovnikov’s Rule

\_ H—Br \ /Br (anti-Markovnikov's
/ RO—OR | product)

heat H

< Via a radical mechanism (see Chapter 10)

< This anti-Markovnikov addition does not
take place with HI, HCI, and HF, even when
peroxides are present

Ch.8-25

3. Stereochemistry of the Ionic
Addition to an Alkene

@X X

\
attack from top AN H“‘_‘C_CH3 N

Bu (]
s}
H u A O (5)-2-Halohexane ©
z /S H=X_ H, (50%) =
C=C ——  JCsCHy—H [}
4 > Bu' O
Bu H ) ©
achiral =
trigonal planar Hé y
carbocation @—> C CHs

X X

attack from bottom (R)-2-Halohexane
(50%)
Ch.8-26

4. Addition of Sulfuric Acid to Alkenes

0SO3H
conc. HZSO4‘ ~
cold / \
®
more stable

3° cation H
. o _ less stable
« Addition of H-OSOsH 1° cation
across a C=C bond
Ch. 8 - 27

4A. Alcohols from Alkyl Hydrogen
Sulfates

0SO3H

conc. H 2504
coId heat

< The overall result of the addition of
sulfuric acid to an alkene followed by
hydrolysis is the Markovnikov addition
of H- and -OH

Ch.8-28

5. Addition of Water to Alkenes:
Acid-Catalyzed Hydration

< Overall process

e Addition of H-OH across a C=C
bond

e H" is the electrophile
e Follow Markovnikov’s rule

OH
H>,0 A
'
dilute H30™ ;

(e.g. dilute HySO4, H3PO4)

Ch.8-29

5A. Mechanism

i
H—0—H H2Q
A@
: slow @ fast > ,
(step 1) (step 2)

more stable H '(] H
3° cation ;
fast H2§
(step 3)
H H
H—O0—H +
®
OH




5B. Rearrangements

< Rearrangement can occur with certain
carbocations

H,0 /}9
N e [

NOT ll,z—alkyl shift

N o TN
) R

(major product)

Ch.8-31

6. Alcohols from Alkenes through
Oxymercuration—Demercuration:
Markovnikov Addition

< Step 1: Oxymercuration
\_ /  Ho(OAc) | |
/SN T . T T
2 HO HgOAc

< Step 2: Demercuration
| | NaBHj | |
—C—C— ———» —(C—C—
I OH~ |1
HO HgOAc HO Hg o35

6A. Regioselectivity of Oxymercura-
tion-Demercuration

< Oxymercuration—demercuration is also
highly regioselective and follows
Markovnikov’s rule

Hg(OAC, — \ /1997 Nap,
THFE-H,0 ] OH™
HO

>

HO
Ch.8-33

6B. Rearrangements Seldom Occur in
Oxymercuration—-Demercuration

< Recall: acid-catalyzed hydration of
some alkenes leads to rearrangement
products

e.g.
\ o OH
1T\ H:504 " "

Ch.8-34

Ch.8-35

< Rearrangements of the carbon skeleton
seldom occur in oxymercuration—

demercuration
no rearrangement

OH

\ 1. Hg(OAc),, THF-H,0 >‘)\

'

2. NaBH

AT 2 nsry |
‘via >‘)O; ‘

Hg(OAc)

Ch.8-36




6C. Mechanism of Oxymercuration
< Does not undergo a “free carbocation”

)
/OAc
6+H +
9 YSHQOAC
OAc )

>: —_ AcO + 5>;‘ -

< Stereochemistry
e Usually antraddition

ﬁ Hg(OAC),
—_—
} THF-HO H3C

H3C

L é;;Hg(OAc)

HgOAc HgOAc
OH H \
4_“ —
H,0
HO - <0~ w
(__,qe " CHs  Hg(OAQ)
Ch.8-37 Ch.8-38
< Although attack by water on the < Solvomercuration-Demercuration
bridged mercurinium ion leads to ant/ or
addition of the hydroxyl and mercury Hg(02CCF3);
groups, the reaction that replaces THE-ROH /]
mercury with hydrogen is not Hg(02CCF3)
stereocontrolled (it likely involves NaBH
. . 4
radicals). This step scrambles the OH-
overall stereochemistry
< The net result of oxymercuration— OR
demercuration is a mixture of synand ﬂ_‘
anti addition of —H and —OH to the H
alkene Ch.8-39 Ch.8-40

7. Alcohols from Alkenes through
Hydroboration—Oxidation:
Anti-Markovnikov Syn Hydration

N o, L
/

]
H BH,
« Addition of H-BH, across a C=C bond

Ch.8-41

+ BHj; exists as dimer B,Hg or complex
with coordinative solvent

0
H—B—B—H
|
H
| i
H—B—=—:0 H—B=—:S_
N H Me

(BH3-THF) (BH5-DMS)

Ch.8-42




syn addition

H _OH

ﬁ 1. BH3-THF <|/\‘7
—_—
2. H0,, OH™

H3C H CH3 H

Anti-Markovnikov addition
Of \\HII & \\OHII

Ch.8-43

< Compare with oxymercuration-

demercuration
OH__H
Y— . |
THF-H,0 | | |
H3C H CHs  Hg(OAc)

anti addition lNaBH“

OH__H

Markovnikov addition H
H

Of \\HII & \\OHII CH3

Ch.8-44

8. Hydroboration: Synthesis of
Alkylboranes

/ /  hydroboration | |
C=C\ + H—B\ > —(IZ—$—
H B
alkene boron alkylborane
hydride
Ch.8-45

8A. Mechanism of Hydroboration

H3Cy,  WH H3Cy,_ H H3Cy,,
H H H 0 H* (‘QA H'H
+ —_— —_— A\
¥ \H H-BY,
o H—BY H
=By, H
7 complex
I-||-|3C/’¢ 5H H |‘||_|3~ﬁ‘(;€ :r_ b\\H H
H g-wH H- 'é?II/H
syn addition ﬁ four-atom h
of Hand B concerted T.S.
Ch.8-46

< Other examples

D
(1) —_— +

H BH, HB H
© 1)
o /L;/ H—BH,-THF H .
H BH, HB H
@ : 2)

Ch. 8 - 47

8B. Stereochemistry of Hydroboration

< Syn addition

H __ BH,
—_—
—_—
S E BH3-THF ‘ ‘
H3C H CH; H
Ch.8-48




9. Oxidation and Hydrolysis of
Alkylboranes

S
&0

B always ends B S B

up on the least H/H;\
hindered carbon )J\

(trialkyl borane)

< Oxidation

N e
)vfj\ - Y\O/B\O/Y

Ch. 8 - 49 Ch. 8 -50
e Via )
< Hydrolysis
R
I\ ) (
RzB  O—OH —» R—B—O OH — /
'V} '&70" (Ij
B
o R P S
HO—O/L 1 S J —OH \r\o O/\( NaOH
RO” TOR 4| / H,0
| 04
OH
R OR
e !
3,\0 ? OR —»RO/B\OR 3 )\/OH + Na3BOs3
HO  Or
Ch.8 -51 Ch.8 -52

< Overall synthetic process of
hydroboration-oxidation-hydrolysis

1. BH3-THF >
2. HyOy -

3. NaOH, H,0 H OH

e Overall: anti-Markovnikov addition
of H-OH across a C=C bond

e Opposite regioisomers as
oxymercuration-demercuration

Ch.8-53

anti-Markovnikov
syn addition

CH; H

This oxidation step occurs with

retention of configuration ch.8- 54




10. Summary of Alkene Hydration
Methods

Summary of Methods for Converting Alkene to Alcohol

Occurrence of
Reaction Regiochemistry  Stereochemistry — Rearrangements
Acid-catalyzed Markovnikov Not controlled Frequent
hydration addition
Oxymercuration-  Markovnikov Not controlled Seldom
demercuration addition
Hydroboration-  Anti-Markovnikov Stereospecific: Seldom
oxidation addition syn addition of
H -and -OH
Ch.8-55

< Examples

. ®
a H——> @
v %’\f 1,2-hydride : \
H

shift
H* OH with
H—O> H rearrangement
2
OH

1. Hg(OAc),, THF-H,0 H
\ — >
2. NaBHg4, OH
Markovnikov addition of H,O

without rearrangement

H anti-Markovni-

1. BH3-THF OH kov, syn
. L
2. Hy0,, OH- addition of H,0O
Ch. 8- 56

11. Protonolysis of Alkylboranes

/ CH3COxH /

R—B ——— R—H + CH3CO,—8B

\ heat \
alkylborane alkane

< Protonolysis of an alkylborane takes place
with retention of configuration; hydrogen
replaces boron where it stands in the
alkylborane

+ Overall stereochemistry of hydroboration—
protonolysis: syn Ch. 8 - 57

» e.g
1. BH3-THF
— —————————> HiC H
3 —_ -
HsC . H 2. CH3CO,D ﬁ 5
+ enantiomer
o A
via : :
»  |HCwer— = | ----- -
H BH,

Ch.8-58
12. Electrophilic Addition of Bromine < Examples
and Chlorine to Alkenes . Br B
) "
. (1) — +
< Addition of X=X (X = Cl, Br) across a O -5°C O:,,Br O\Br
C=C bond (anti addition of Bry) (racemate)
Br
\C C/ —>Br2 (I: é cl <
= —C(—=C— Ph 2, Ph X
/ \ CCly | é @) \/\Ph ~10°C 1 Ph
r
(anti addition of Cl;) Cl Ph Ph
_(vicin_al same as
dibromide) a Xl
(rotation of C1-C2 bond)
Ch.8-59 Ch. 8 - 60




12A. Mechanism of Halogen Addition

< Stereochemistry
e Anti addition

///I"C c o + B 5 Y, R\

. r—Br , —

4 » 4 : » Br—Br ©
Br—Br bond becomes . : . Br
polarized when close O F cal
to alkene ?r7 H H 4 S A>

§Br Br
T Br Z N@ \ H ___Br Sn2 reaction
7:_("'::// —~ \WA + Br enantiomer + H
Br Br> Br H
(vincinal ® .
Dibromide) (bromonium) Ch. 8 - 61 (antl) Ch. 8 - 62
13. Stereospecific Reactions e Reaction 1
H CH3 B, Br. CHs Br. Br
. . o —_— ‘aH = S—o
< A reaction is stereospecific when a o HETC = e
H3C H 4 HsC Br HsC  CH3

particular stereoisomeric form of the
starting material reacts by a
mechanism that gives a specific
stereoisomeric form of the product

Ch.8-63

(2R, 35)-2,3-Dibromobutane
(a meso compound)

trans-2-Butene

e Reaction 2
H H Br, Br\ g LL JBr
- H\\\'C—C‘CH3 + H3C~C_C"I/H
HsC cHy CCla 2 e B’ s
cis-2-Butene (2R,3R) (25,3S)
(a pair of enantiomers)
Ch. 8 - 64

< Addition of bromine to ¢is-2-Butene

Br H
@) N CaCH;
HW
4
H3C Br
@) _:5%. (b) | (2R3R)2,3-Dibromobutane
- (chiral)
H
e _ o o HiCaZ (aCH;
2 4 \/ A\ /-
HyC' > \YCH <% ?
+ o0
6:?“ H B
- bromonlum s r
SB> ion H3CAE—C/.,,/
(achiral) ~ (b) /7w H
Br CH3
(25,35)-2,3-Dibromobutane
(chiral)

Ch.8-65

< Addition of bromine to frans-2-Butene

B CHs
@ N\ T
HwC—C
4
H3C Br
(@) . B 2 (b) (R,S)-2,3-Dibromobutane
(meso)
H CH3
N — HiCaZE_ X SaH

S W

HsC é
X g
L bromonium
"?.r'> ion H3Cm

H Br
t—C.
: —NMICH
b 3
(achiral)  (b) Br/ Il_i
(R 5)-2,3-Dibromobutane
(meso)
Ch. 8 - 66




14. Halohydrin Formation

\_ / X2 P
c=C ——> —C—C—
/\ H,0 | >|(

< Addition of —OH and —X (X = Cl, Br)
across a C=C bond

« X" is the electrophile

< Follow Markovnikov’s rule

Ch. 8 - 67

< Mechanism

ﬁ Br—/er S 7 | "2

H,0 Hc® ‘
H3C Hf 2 3 B
8+
i A

Ch. 8 - 68

< Other variation

e If H,0 is replaced by ROH, ROH will
be the nucleophile

e.g.
OMe

Bl’z
—_—
MeOH
Br

Ch. 8- 69

15. Divalent Carbon Compounds:

Carbenes
15A. Structure and Reactions of
Methylene
e ﬁa heat e
:CHy—N=N: —> :(CH, + :N=N:
or light
Diazomethane Methylene Nitrogen

(a carbene)

Ch.8-70

© ® ® O o o ®
:CH;—N=N: <> H,C=N=N: &> :CH,—N=N:

I II III
\ 7/ \. /
C=C +~-:CH, —> c—C
/ \ VWA
C
AN
H H
Alkene Methylene Cyclopropane
Ch.8-71

15B. Reactions of Other Carbenes:
Dihalocarbenes

< :CXZ (e.g. :CClz)
< Generation by a-elimination of
chloroform

H

17/ _o'su . o
weC — :CCl, + BuOH + Cl
A ~q

Cl

Ch.8-72




< Usually a syn (cis) addition across a + Stereospecific reactions
C=C bond a
CI///'
:CCl g
tBuOK ‘\\\H \/\ 2 ///,"~.§\
() —2=- (R —
CHCl3 _
: o«
—|:| C|///, !
:CCly "
(a cyclopropane) K\ — F\
Ch.8-73 Ch.8-74
15C. Carbenoids: The Simmons-Smith < A stereospecific syn (cis) addition
Cyclopropane Synthesis across a C=C bond
CH,I
N 2 .
I 7nI Zn(Cu)
CH)I, + Zn(Cu) — \|C-:|/ (trans) (trans)
2
(Zinc-copper (a carbenoid)
couple)
CH,I,
K\ Zn(Cu)
(cis) (cis)
Ch.8-75 Ch.8-76
16. Oxidation of Alkenes: 16A. Mechanism for Syn
Syn 1,2-Dihydroxylation Dihydroxylation of Alkenes
< Overall: addition of 2 OH groups across ai.kmno; |||
a C=C bond OH”, Hy0 0 o ||
cold 2 /O H,0 _$_$_
\C=C/ o//Mn\o@ OH OH
/ \ \C—C - - + MnO,
OH OH / - \ _ o -
<+ Reagents: dilute KMnO, / OH® / H,O / _O_C_ NaHSO3 _é_é_
cold or OsO,, pyridine then NaHSO;, p;);g;e ) ;O/SQO HO e
Ch.8-77 ) ) +c():fl.8-78

H,O




< Both reagents give syn dihydroxylation

dil. KMnO4
OH™, HyO, cold H/\H
'

Q or 0sQy, pyridine

H H then NaHSO3
OH OH
(cis-diol)

Ch.8-79

< Comparison of the two reagents
e KMnO,: usually lower yield and
possibly side products due to over-
oxidation

2

OH
1. KMnOy, A
~ X — > \/go + OY
OH
(oxidative cleavage of C=C)

e 0s0,: usually much higher yield but
0s0, is extremely toxic
Ch.8-80

17. Oxidative Cleavage of Alkenes

17A. Cleavage with Hot Basic
Potassium Permanganate

< Other examples

: 1. KMnOg4, OH™, Hy0, heat
1 : > 0
(L) : 2. H30"

+

0
a . KMnOg4, OH~, H>O 0=C=0
b X ~b : — 2 )a!\ ©
-3 A b 0
H30*
or 3 l 1. KMnO4, OH", H,0, heat o
aia (2) > o > 0
- (@) - M3
b/t \b )]\
zb a OH OH
Ch.8-81 Ch.8 - 82
17B. Cleavage with Ozone < Examples o
4
R R" 1 O R R" 1. 03
\_/ 3 - >=o + o=< (1) >
/—\ 2. 7n. ACOH 2. Zn, AcOH
R H - < R H \
or Me,S 0

Ch.8-83

1.03 (0]
@) \/\)\ o \/Y
% 2. Me,S h
+
o~

Ch.8 -84




< Mechanism
\ /

| |
c=¢c —> —C+C— —> ¢~ +

/ \ o \e ] 1l

3 .p<:6<,'0,. 0 gy O
@u by .o.
O\l\// * initial ozonide

Q
®
\C//.{g'/\} \ B/
ZaN
—_ C C —» Zn(0OAc); +
Z..T//C N (OA)
30-ge Q=0

ozonide >C=O + O=C/

Ch.8-85

18. Electrophilic Addition of
Bromine & Chlorine to Alkynes

X

X5 (excess) .

R—C=C—H —— > R—C—C—H
CH2C|2 | |
(X =Cl, Br, I) X X

X H X

X2 \ /7 X2 [
R—C=C—H—>» (C=C —>» R—C—C—H

/ \ | |

H X X X

(anti-addition) Ch.8-86

19. Addition of Hydrogen Halides
to Alkynes

X H
H—X (excess) I
R—C=C—H » R—C—C—H
(X=4dl,Br,1I) .
X H

< Regioselectivity
e Follow Markovnikov’s rule

Br H Br H
HBr \ s | HBr I
H;C—C=C—H—> /C=C\ —>CH3—$—(IZ—H
CH3 H Br H
genrdibromide
Ch. 8 - 87

< Mechanism

Wb

H—Br ® v Br

CH3—C=C—H —> CH3—C=C\ j
H
Br H

\ /
c=C
/
CH; ) H
Br H @/B\ H
Br "\@ | H—Br
CHy—C—C—H =—— C—C—H
Br H CHs
Ch.8 - 88

< Anti-Markovnikov addition of hydrogen
bromide to alkynes occurs when
peroxides are present in the reaction
mixture

(£) and (2
(74%)

Ch.8 -89

20. Oxidative Cleavage of Alkynes

1.03

R—C=C—R ———» RCO,H + R'CO,H
2. HOAC
OR
1. KMnOg4, OH™
R—C=C—R' — RCO,H + R'CO,H
2. H30
<+ Example
1.03
Ph—C=C—CH3 ——— PhCOH + CH3COyH
2. AcOH

Ch.8-90




21. How to Plan a Synthesis:
Some Approaches & Examples

< In planning a synthesis we often have
to consider four interrelated aspects:
1. Construction of the carbon
skeleton
2. Functional group interconversions
3. Control of regiochemistry
4. Control of stereochemistry

Ch.8-91

21A. Retrosynthetic Analysis

< How to synthesize /\( ?

OH

e Retrosynthetic analysis

> AN\F
T

(target molecule) (precursor)

Ch.8-92

Markovnikov addition
e Synthesis of H,0

H+
N\F —_— /ﬁ/
H,0
OH

or 1. Hg(OAC),, THF-H,0 T
2. NaBHg4, OH™

Ch.8-93

+ How to synthesize _~_"~,, ?

e Retrosynthetic analysis

Ay D

(target molecule) (precursor)
e Synthesis
/\/ 1. BH3-THF PN
2. Hy0p, OH™ OH

anti-Markovnikov addition of H,O
Ch.8-94

21B. Disconnections, Synthons, and
Synthetic Equivalents

< One approach to retrosynthetic
analysis is to consider a retrosynthetic
step as a “disconnection” of one of the
bonds

< In general, we call the fragments of a
hypothetical retrosynthetic
disconnection Synthons

Ch.8-95

< Example
How? B

r Br
Ph————H —L> ></CH3
Ph
e Retrosynthetic analysis

) Br. Br
0 >Q/CH3 = Ph—=—=—0H;
Ph

(gem-dibromide came from addition
of HBr across a C=C bond)
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e Retrosynthetic analysis

synthons
f_/%
|
. - o ®
(i) Ph—=——=-CH3 j Ph—— + CHjs3
disconnection U
BN CNC)
HC—I + Ph Na
A\ J
Y
synthetic equivalent
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e Synthesis

NaNHz
Ph———-H
lig. NH3
-30°C H3C—I
(via an Sy2
reaction)
Br, Br
Ph></ CHs (excess) — O
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21C. Stereochemical Considerations

How? Br Br

H3C—=——=CH; — = »
H3C CHs3

Ch.8-99

< Retrosynthetic analysis
e The precursor of a vicinal dibromide

is usually an alkene
e Bromination of alkenes are anti

addition B
r
Br Br /k/
CH
> ﬁ) ( H3C X ’
H3C COH3 Br
(rotate 180") (anti addition
U of Br,)

(anti addition of H,)

X CH

HsC
Ch.8 -100

e Synthesis
1. Li, lig. NH3
2. NH4Cl 3
(anti addition of H,)
anti
Bra/CClq gddition
Br Of Brz)
Br Br same
-~ CH3
H3C :
as 3 i
H3C CHs3 EI’
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2 END OF CHAPTER 8 &
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